The area of an isosceles triangle can be calculated using the formula: [tex]\begin{gathered}\begin{gathered}\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}\end{gathered}\end{gathered}[/tex]If you know the lengths of the two equal sides (a) and the base (b), you can find the height (h) using: [tex]h = \sqrt{a^2 - \left(\frac{b}{2}\right)^2}[/tex]Then, the area can also be expressed as: [tex]\text{Area} = \frac{1}{2} \times b \times \sqrt{a^2 - \left(\frac{b}{2}\right)^2}[/tex]Alternatively, if you know two sides and the angle (α) between them, the area formula is: [tex]\text{Area} = \frac{1}{2} \times a \times b \times \sin(\alpha)[/tex]