10 Examples of Ordered Pairs that Represent FunctionsA function means each input (x-value) has exactly one output (y-value). Here are 10 examples of sets of ordered pairs that are functions: 1. {(1, 2), (2, 3), (3, 4), (4, 5)}2. {(0, 0), (1, 1), (2, 2), (3, 3)}3. {(-2, 4), (-1, 3), (0, 2), (1, 1)}4. {(5, 10), (6, 12), (7, 14), (8, 16)}5. {(-3, 9), (-2, 4), (-1, 1), (0, 0)}6. {(1, 5), (2, 5), (3, 5), (4, 5)}7. {(10, 100), (20, 400), (30, 900)}8. {(1, -1), (2, -2), (3, -3), (4, -4)}9. {(x, x²) | x = -2, -1, 0, 1, 2)}10. {(x, 2x+1) | x = 0, 1, 2, 3}In each set above, no x-value repeats, so all are functions. 10 Examples for Vertical Line Test (that pass or fail)The vertical line test tells if a graph is a function:If any vertical line touches the graph in more than one point, it’s not a function. Passes the Vertical Line Test (✓ means it's a function): 1. ✓ y = x2. ✓ y = x²3. ✓ y = √x4. ✓ y = |x|5. ✓ y = 2x + 16. ✓ y = x³7. ✓ y = sin(x) (passes for standard sine graph)8. ✗ x = 3 (a vertical line – not a function)9. ✗ Circle: x² + y² = 1 (fails the test – not a function)10. ✗ y² = x (sideways parabola – fails)So, examples 1–7 pass the test, and 8–10 fail. 10 Examples of Mapping Diagrams (Function Mappings)In a mapping diagram, we show how inputs (domain) are connected to outputs (range). Here are 10 examples that represent functions: 1. Domain: {1, 2, 3}Range: {4, 5, 6}Mappings: 1→4, 2→5, 3→62. Domain: {a, b, c}Range: {x, y, z}Mappings: a→x, b→y, c→z3. Domain: {0, 1, 2}Range: {1}Mappings: 0→1, 1→1, 2→14. Domain: {x, y}Range: {1, 2, 3}Mappings: x→1, y→35. Domain: {-2, -1, 0, 1, 2}Range: {4, 1, 0}Mappings: -2→4, -1→1, 0→0, 1→1, 2→46. Domain: {10, 20, 30}Range: {100, 200, 300}Mappings: 10→100, 20→200, 30→3007. Domain: {a, b, c}Range: {1}Mappings: a→1, b→1, c→18. Domain: {5, 6, 7}Range: {10, 12}Mappings: 5→10, 6→10, 7→129. Domain: {p, q, r}Range: {m, n}Mappings: p→m, q→n, r→m10. Domain: {1, 2, 3, 4}Range: {9, 16, 25}Mappings: 1→9, 2→16, 3→25, 4→25Each input maps to only one output in these diagrams, so all are valid functions[tex].[/tex]