To find [tex]G \cup \:H$$[/tex] (the union of sets G and H), we combine all the unique elements from both sets.Given: [tex]G = \left\{\frac{2}{7}, \frac{1}{2}, \frac{3}{5}, \frac{4}{3}\right\}$$[/tex] [tex]H = \{0.2, 0.45, 1.73, 2.8\}$$[/tex]Convert the fractions in [tex]G[/tex] to decimals to see if any overlap with [tex]H[/tex]:[tex]\frac{2}{7} \approx 0.2857$$[/tex][tex]\frac{1}{2} = 0.5$$[/tex] [tex]\frac{3}{5} = 0.6$$[/tex][tex]\frac{4}{3} \approx 1.3333$$[/tex]Now, since none of these decimal approximations match exactly any of the values in [tex]H[/tex] (0.2, 0.45, 1.73, 2.8), all elements are unique.Therefore, [tex]\begin{gathered}\begin{gathered}$$G \cup H = \left\{\frac{2}{7}, \frac{1}{2}, \frac{3}{5}, \frac{4}{3}, 0.2, 0.45, 1.73, 2.8\right\}$$\end{gathered}\end{gathered}[/tex]