The answer is [tex]\bold{(f \circ g)(x) = 2x^2 + x - 2}[/tex].Here's Why:To find [tex](f \circ g)(x)$$[/tex], which means [tex]$$f(g(x))$$[/tex], substitute [tex]$$g(x)$$[/tex] into [tex]$$f(x)$$[/tex]:Given: [tex]$$f(x) = x + 1$$[/tex] [tex]$$g(x) = 2x^2 + x - 3$$[/tex]Now, substitute [tex]$$g(x)$$[/tex] into [tex]$$f$$[/tex]:[tex]$$(f \circ g)(x) = f(g(x)) = g(x) + 1 = (2x^2 + x - 3) + 1$$[/tex]Simplify:[tex]$$(f \circ g)(x) = 2x^2 + x - 2$$[/tex]