We will use the geometric sequence formula to determine the next term, which is:[tex]aₙ = a₁ \times {r}^{(n - 1)} [/tex]6. 3, 6, 12,... Find a7[tex] a_{1} = 3 \\ r \: = \: 2 \\ a_{7} = 3 \times {2}^{6} \\ a_{7} = 192[/tex]7. 10, 5, 5/2,... Find a6[tex]a_{1} = 10 \\ r = \frac{1}{2} \\ a_{6} = 10 \times ({ \frac{1}{2}) }^{5} \\ a_{6} = \frac{10}{32} \\ a_{6} = \frac{5}{16}[/tex]8. 1, 3, 9,... Find a9[tex] a_{1} = 1 \\ r = 3 \\ a_{9} = 1 \times {3}^{8} = 6561 [/tex]9. 2, -1, 1/2,... Find a10[tex] a_{1} = 2 \\ r = \frac{ - 1}{2} \\ a_{10} = 2 \times ( \frac{ - 1}{2})^{9} \\ a_{10} = \frac{ - 1}{256} [/tex]10. 100, 20, 4,... Find a8[tex]a_{1} = 100 \\ r = \frac{1}{5} \\ a_{8} = 100 \times ( { \frac{1}{5}) }^{7} \\ a_{8} = \frac{100}{78125} [/tex]