Answer:To find (F - H)(-1), we first need to determine the expression for (F - H)(x), which is F(x) - H(x). Given F(x) = 6x^4 - 5x^3 + 8x^2 - 3 and H(x) = 10x^3 - 7x^2 + 9x + 4, the difference is:(F - H)(x) = (6x^4 - 5x^3 + 8x^2 - 3) - (10x^3 - 7x^2 + 9x + 4)= 6x^4 - 5x^3 + 8x^2 - 3 - 10x^3 + 7x^2 - 9x - 4= 6x^4 - (5x^3 + 10x^3) + (8x^2 + 7x^2) - 9x - (3 + 4)= 6x^4 -15x^3 +15x^2 -9x -7.Next, evaluate at x = -1:( F - H )( -1 ) = 6(-1)^4 -15(-1)^3 +15(-1)^2 -9(-1) -7= 6(1) -15(-1) +15(1) +9 -7= 6 +15 +15 +9 -7= (6+15+15+9-7) = 38.Therefore, (F-H)(-1) equals **38**.Step-by-step explanation: