Step-by-step explanation:1.) x² + 5x + 6 = 0Identify a, b, and c in the quadratic equation ax² + bx + c = 0. In this case, a = 1, b = 5, and c = 6.Apply the quadratic formula: x = [-b ± √(b² - 4ac)] / 2aSubstitute the values of a, b, and c into the formula:x = [-5 ± √(5² - 4 * 1 * 6)] / (2 * 1)Simplify the expression:x = [-5 ± √(25 - 24)] / 2x = [-5 ± √1] / 2x = [-5 ± 1] / 2Solve for the two possible values of x:x₁ = (-5 + 1) / 2 = -4 / 2 = -2x₂ = (-5 - 1) / 2 = -6 / 2 = -3Answer: x = -2, -32.) 2x² - 7x + 3 = 0Identify a, b, and c. Here, a = 2, b = -7, and c = 3.Apply the quadratic formula: x = [-b ± √(b² - 4ac)] / 2aSubstitute the values:x = [7 ± √((-7)² - 4 * 2 * 3)] / (2 * 2)Simplify:x = [7 ± √(49 - 24)] / 4x = [7 ± √25] / 4x = [7 ± 5] / 4Solve for x:x₁ = (7 + 5) / 4 = 12 / 4 = 3x₂ = (7 - 5) / 4 = 2 / 4 = 1/2Answer: x = 3, 1/23.) x² + 5x + 6 = 0This is the same as question 1.Identify a, b, and c: a = 1, b = 5, c = 6Apply the quadratic formula: x = [-b ± √(b² - 4ac)] / 2aSubstitute:x = [-5 ± √(5² - 4 * 1 * 6)] / (2 * 1)Simplify:x = [-5 ± √(25 - 24)] / 2x = [-5 ± √1] / 2x = [-5 ± 1] / 2Solve for x:x₁ = (-5 + 1) / 2 = -4 / 2 = -2x₂ = (-5 - 1) / 2 = -6 / 2 = -3Answer: x = -2, -3