In the given problem, the common difference is 2To solve this, let's follow the formula for finite numbers[tex]s_n=\frac{n}{2}[2a+(n-1) d][/tex]Substitute for the given values[tex]s_2_0= \frac{20}{2} [2(5)+(20-1)d][/tex]Simplify[tex]400=10 [10+(19)d][/tex]400 = 10 (10+19d)400 = 20+ 190dTranspose 20 to become -20400 - 20 = 190d380 - 190dDivide both sides by 190 so d will be left[tex]\frac{380}{90} =\frac{90d}{90}[/tex]2 = dor by symmetric property,d=2Therefore, the common difference is 2