Using the FOIL method for this problem:Step 1: Multiply the front terms.[tex]$\sf{({\boxed{\underline{\sf{x}}}}+1)({\boxed{\underline{\sf{2x}}}}-3)}$[/tex]We got [tex]$\sf{2x^2}$[/tex]Step 2: Multiply the outside terms.[tex]$\sf{({\boxed{\underline{\sf{x}}}}+1)(2x {\boxed{\underline{\sf{-3}}}})}$[/tex]We got [tex]$\sf{-3x}$[/tex]Step 3: Multiply the inside terms.[tex]$\sf{(x+{\boxed{\underline{\sf{1}}}})({\boxed{\underline{\sf{2x}}}}-3)}$[/tex]We got [tex]$\sf{2x}$[/tex]Step 4: Multiply the last terms.[tex]$\sf{(x+{\boxed{\underline{\sf{1}}}})(2x{\boxed{\underline{\sf{-3}}}})}$[/tex]We got [tex]$\sf{-3}$[/tex]Now combine all the answers and like terms.[tex]$\sf{2x^2-3x+2x-3 \implies 2x^2 -x-3}$[/tex]Final answer:[tex]$\sf{2x^2 -x-3}$[/tex]