Here's how to solve this problem step-by-step:1. Understand the Arithmetic Sequence Formula:An arithmetic sequence follows the pattern: [tex]$\sf{a_n=a_1+(n-1)d}$[/tex]Where:[tex]$\sf{a_n}$[/tex] is the nth term[tex]$\sf{a_1}$[/tex] is the first term[tex]$\sf{n}$[/tex] is the term number[tex]$\sf{d}$[/tex] is the common difference2. Set up Equations:We're given:[tex]$\sf{a_3 =35}$[/tex] (3rd term is 35)[tex]$\sf{a_{10}=77}$[/tex] (10th term is 77)Using the formula, we can create two equations:Equation 1: [tex]$\sf{35 = a_1 + (3-1)d \implies 35 = a_1 + 2d}$[/tex]Equation 2: [tex]$\sf{77 = a_1 + (10-1)d \implies 77 = a_1 + 9d}$[/tex]3. Solve the System of Equations:We now have a system of two linear equations with two variables ([tex]$\sf{a_1}$[/tex] and [tex]$\sf{d}$[/tex]). We can solve this using substitution or elimination. Let's use elimination:Subtract Equation 1 from Equation 2:[tex]$\sf{(77 = a_1 + 9d) - (35 = a_1 + 2d)}$[/tex]This simplifies to:[tex]$\sf{42 = 7d}$[/tex]Solving for d:[tex]$\sf{d = \frac{42}{7} = 6}$[/tex]4. Find the First Term ([tex]$\Large\sf{a_1}$[/tex]):Substitute the value of d (6) back into either Equation 1 or Equation 2. Let's use Equation 1:[tex]$\sf{35 = a_1 + 2(6)}$[/tex][tex]$\sf{35 = a_1 + 12}$[/tex][tex]$\sf{a_1 = 35 - 12 = 23}$[/tex]5. Find the 5th Term ([tex]$\Large\sf{a_5}$[/tex]):Use the formula [tex]$\sf{a_n=a_1+(n-1)d}$[/tex] with n = 5:[tex]$\sf{a_5 = 23 + (5-1)(6) = 23 + 24 = 47}$[/tex]Final answers:1st term ([tex]$\sf{a_1}$[/tex]) = 23Common difference (d) = 65th term ([tex]$\sf{a_5}$[/tex]) = 47