Answer:57 is false Step-by-step explanation:1. Restate the problem: Evaluate the expression \frac{4}{3} \times \frac{5}{4} + \frac{11}{6} \div \frac{3}{5} and determine if the result is equal to 57.2. Step-by-step solution:- Multiplication: \frac{4}{3} \times \frac{5}{4} = \frac{4 \times 5}{3 \times 4} = \frac{20}{12} = \frac{5}{3}- Division: \frac{11}{6} \div \frac{3}{5} = \frac{11}{6} \times \frac{5}{3} = \frac{11 \times 5}{6 \times 3} = \frac{55}{18}- Addition: \frac{5}{3} + \frac{55}{18} = \frac{5 \times 6}{3 \times 6} + \frac{55}{18} = \frac{30}{18} + \frac{55}{18} = \frac{30 + 55}{18} = \frac{85}{18}3. Comparison: The result \frac{85}{18} is not equal to 57. Therefore, the statement "\frac{4}{3} \times \frac{5}{4} + \frac{11}{6} \div \frac{3}{5} = 57" is false.
85/18, which is about 4.72 — not 57.Let me know if you'd like to try another one!