The 88th term of the sequence is [tex]$-162$[/tex].Here's why:Given the arithmetic sequence: 12, 10, 8, 6, 4First term [tex]$$a_1 = 12$$[/tex]Common difference [tex]$$d = 10 - 12 = -2$$[/tex]We want to find the 88th term [tex]$$a_{88}$$[/tex]Use the formula for the nth term of an arithmetic sequence: [tex]$$a_n = a_1 + (n - 1)d$$[/tex]Substitute the values:[tex]$$a_{88} = 12 + (88 - 1)(-2)[/tex] [tex]= 12 + 87 \times (-2)[/tex] [tex]= 12 - 174 = -162$$[/tex]Thus, the 88th term [tex]$ a_{88} $[/tex] is indeed [tex]$-162$[/tex].