Here are my answers:6.) Show that 1024 is a power of 2:[tex] \sf {2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024}[/tex][tex] \sf{ {2}^{10} = 1024}[/tex]7.) Exponential Form of 1024:[tex] \sf{ {2}^{10} }[/tex]8.) Power of 2 multiples of 16, more than 50 but less than 200:[tex] \sf {2^5 =32}[/tex] (incorrect)[tex]\sf {2^6=64} [/tex] (correct)64 is a multiple of 16 and between 50–200.9.) Is there a number between 0.998 and 0.999? YES, example: 0.9985.10.) Subtract 0.998 from 0.999: 0.999 − 0.998 = 0.00111.) Is there a fraction greater than ¾ but less than 1? YES, example: [tex] \sf {\frac{7}{8}}[/tex]or [tex] \sf {\frac{9}{10}}[/tex].