The net field is 25,456 N/C, directed southeast (diagonal between x and y axes).Given:[tex]Q_{1} =[/tex] -32μC at y = 4m[tex]Q_{2} =[/tex] +18μC at x = 4mFind electric field at origin from each charge and net fieldElectric field formula: [tex]E = \frac{k- /Q/ }{r^{2} }[/tex]Where:[tex]k = (9) (10^{9})(Nm^{2}) / C^{2}[/tex]Q is chargein Coulombs (μC = [tex]10^{-6} C[/tex] is distance from charge to origina) [tex]E_{1}[/tex] (due to Q₁ at y = 4 m)[tex]E_{1}= \frac{(9)(10^{9})(10^{-6} )}{4^{2} } \\ E_{1}= \frac{288,000}{16 }\\ E_{1}= 18,000 N/C[/tex]b) [tex]E_{2}[/tex] (due to Q₂ at x = 3 m)[tex]E_{2} = \frac{(9)(10^{-9}-18)(10x^{-6} )}{3^{2} }\\ E_{2} = \frac{162,000}{9}\\ E_{2} = 18,000 N/C[/tex]c) Net Electric Field at originE₁ and E₂ are perpendicular, so use Pythagorean theorem.[tex]E_{net} = \sqrt{(E^{2}_{1} )+(E^{2}_{2} )} \\E_{net} = \sqrt{(18,000^{2} ) + (18,000^{2} )} \\E_{net} = \sqrt{2(18,000^{2})} \\E_{net} = 18000\sqrt{2} \\E_{net} = 25,456 N/C[/tex]