[tex]\begin{gathered}\begin{gathered}{\underline{\huge \mathbb{A} {\large \mathrm {NSWER : }}}} \\\end{gathered}\end{gathered}[/tex] To calculate the distance covered by the habal-habal motor bicycle as it accelerates, we can use the kinematic equation for motion: [tex]d = ut + \frac{1}{2}at^2[/tex] Where: d is the distance covered u is the initial velocity (which is 0 since it starts from rest)a is the acceleration t is the time Identify the Given Values From the problem, we have: Initial velocity, [tex]u = 0 \text{ m/s}[/tex] Acceleration, [tex]a = 5.5 \text{ m/s}^2[/tex] Time, [tex]t = 15 \text{ seconds}[/tex] Substitute the Values into the Equation Since the initial velocity [tex]u[/tex] is 0, the equation simplifies to: [tex]d = \frac{1}{2}at^2[/tex] Now substituting the values for a and t: [tex]d = \frac{1}{2} \times 5.5 \text{ m/s}^2 \times (15 \text{ s})^2[/tex] Calculate the Distance First, calculate [tex](15 \text{ s})^2[/tex]: [tex](15 \text{ s})^2 = 225 \text{ s}^2[/tex] Now substitute this value into the equation: [tex]d = \frac{1}{2} \times 5.5 \times 225[/tex] Calculating further: [tex]d = 2.75 \times 225 = 618.75 \text{ meters}[/tex] Conclusion The distance covered by the habal-habal motor bicycle when it reaches Aling Tina's bakery is approximately 618.75 meters. [tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\begin{gathered} \boxed{\begin{array}{cc} \sf \footnotesize \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ···\: ʚ\: \: \: \: \: \: Hope\:it\:helps \: \: \: \: \: ɞ \:··· \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf\footnotesize\:\# CarryOnLearning \\ \sf\footnotesize ૮₍´˶ \: • \: . \: • \: ⑅ ₎ა \: \leadsto \footnotesize\sf\color{purple} \underline{Study\:Well!}\end{array}}\end{gathered}[/tex][tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\large\qquad\qquad\qquad\tt MARCH/13/2025 [/tex]