[tex]\begin{gathered}\begin{gathered}{\underline{\huge \mathbb{A} {\large \mathrm {NSWER : }}}} \\\end{gathered}\end{gathered}[/tex] To calculate the kinetic energy (KE) of an object, you can use the following formula: [tex]KE = \frac{1}{2}MV^2[/tex] where: KE is the kinetic energy, M is the mass of the object,V is the velocity of the object. In this case, you have: Mass [tex]M = 150 \text{ kg}[/tex] Velocity [tex]V = 15 \text{ m/s}[/tex] Now, let's plug these values into the formula step-by-step: Calculate V²: [tex]V^2 = (15 \text{ m/s})^2 = 225 \text{ m}^2/\text{s}^2[/tex] Multiply M by V²: [tex]M \cdot V^2 = 150 \text{ kg} \cdot 225 \text{ m}^2/\text{s}^2 = 33750 \text{ kg} \cdot \text{m}^2/\text{s}^2[/tex] Now, multiply by [tex]\frac{1}{2}[/tex]: [tex]KE = \frac{1}{2} \cdot 33750 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 16875 \text{ J}[/tex] So, the kinetic energy KE of the object is: [tex]KE = 16875 \text{ Joules}[/tex] This means the object with a mass of 150 kg moving at a velocity of 15 m/s has a kinetic energy of 16,875 Joules. [tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\begin{gathered} \boxed{\begin{array}{cc} \sf \footnotesize \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ···\: ʚ\: \: \: \: \: \: Hope\:it\:helps \: \: \: \: \: ɞ \:··· \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf\footnotesize\:\# CarryOnLearning \\ \sf\footnotesize ૮₍´˶ \: • \: . \: • \: ⑅ ₎ა \: \leadsto \footnotesize\sf\color{purple} \underline{Study\:Well!}\end{array}}\end{gathered}[/tex][tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\large\qquad\qquad\qquad\tt MARCH/13/2025 [/tex]