[tex]\begin{gathered}\begin{gathered}{\underline{\huge \mathbb{A} {\large \mathrm {NSWER : }}}} \\\end{gathered}\end{gathered}[/tex] To determine how long it takes for a baseball thrown upward at 50 mph from a height of 10 feet to hit the ground, we can use the principles of kinematics. Here’s how we can break it down step-by-step: Convert Units First, we need to convert the speed from miles per hour (mph) to feet per second (ft/s), since the height is given in feet. 1 mile = 5280 feet1 hour = 3600 seconds To convert 50 mph to feet per second: [tex]50 \text{ mph} = 50 \times \frac{5280 \text{ feet}}{1 \text{ mile}} \times \frac{1 \text{ hour}}{3600 \text{ seconds}} \approx 73.33 \text{ ft/s}[/tex] Use Kinematic Equation Now we can use the kinematic equation for motion under gravity to find the time it takes for the baseball to hit the ground: [tex]h = v_0t + \frac{1}{2}at^2[/tex] Where: h is the height (which will be 0 when it hits the ground) [tex]v_0[/tex] is the initial velocity (73.33 ft/s) a is the acceleration due to gravity (approximately -32.2 ft/s², negative because it acts downward)t is the time in seconds Set Up the Equation Since we start at 10 feet high and end at 0 feet when it hits the ground, we can set up the equation: [tex]0 = 10 + 73.33t - \frac{1}{2}(32.2)t^2[/tex] This simplifies to: [tex]0 = 10 + 73.33t - 16.1t^2[/tex] Rearranging the Equation Rearranging gives us a quadratic equation: [tex]16.1t^2 - 73.33t - 10 = 0[/tex] Solve the Quadratic Equation We can use the quadratic formula: [tex]t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex] Where a = 16.1, b = -73.33, and c = -10. Calculating the discriminant: [tex]b^2 - 4ac = (-73.33)^2 - 4 \cdot 16.1 \cdot (-10) \approx 5377.7 + 644 = 6021.7[/tex] Now applying the quadratic formula: [tex]t = \frac{-(-73.33) \pm \sqrt{6021.7}}{2 \cdot 16.1}[/tex] Calculating the values: [tex]\sqrt{6021.7} \approx 77.57[/tex] Thus, [tex]t = \frac{73.33 \pm 77.57}{32.2}[/tex] This gives us two potential times: [tex]t_1 = \frac{150.9}{32.2} \approx 4.68 \text{ seconds (valid time)}[/tex][tex]t_2 = \frac{-4.24}{32.2} \text{ (not valid, as time can’t be negative)}[/tex] Conclusion The baseball will take approximately 4.68 seconds to hit the ground after being thrown upwards at 50 mph from a height of 10 feet. [tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\begin{gathered} \boxed{\begin{array}{cc} \sf \footnotesize \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ···\: ʚ\: \: \: \: \: \: Hope\:it\:helps \: \: \: \: \: ɞ \:··· \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf\footnotesize\:\# CarryOnLearning \\ \sf\footnotesize ૮₍´˶ \: • \: . \: • \: ⑅ ₎ა \: \leadsto \footnotesize\sf\color{purple} \underline{Study\:Well!}\end{array}}\end{gathered}[/tex][tex]\sf\color{green}{⊱⋅ ────────────────────── ⋅⊰}[/tex][tex]\large\qquad\qquad\qquad\tt MARCH/13/2025 [/tex]