Answer:a) Max height = 8.48 mb) Time to max height = 1.32 sc) Total time in air = 2.64 s______________________________________Given Data:Angle: θ = 37.0° Range: R = 45.0 mGravity: g = 9.81 m/s²1: Find Initial Velocity (v₀)[tex] \tt{v_0^2 = \frac{R \cdot g}{\sin(2\theta)}}[/tex][tex] \tt{v_0^2 = \frac{45.0 \times 9.81}{\sin(74.0°)}}[/tex][tex] \tt{v_0^2 = \frac{441.45}{0.9613}}[/tex][tex] \tt{v_0 = \sqrt{459.3} \approx 21.45 \: { m/s}}[/tex]2: Find Maximum Height (hₘₐₓ)[tex] \tt{v_{0y} = v_0 \sin\theta = 21.45 \times 0.6018 = 12.9 \text{ m/s}}[/tex][tex] \tt{h_{\ {max}} = \frac{(v_{0y})^2}{2g} = \frac{(12.9)^2}{2 \times 9.81}}[/tex][tex] \tt{h_{\ {max}} = \frac{166.41}{19.62} \approx 8.48 \: { m}}[/tex]3: Find Time to Max Height (tₘₐₓ)[tex] \tt{t_{\ {up}} = \frac{v_{0y}}{g} = \frac{12.9}{9.81} \approx 1.32 \ { s}}[/tex]4: Find Total Time in Air (tₜₒₜₐₗ) [tex] \tt{t_{\ {total}} = 2 \times t_{\ {up}} = 2 \times 1.32 = 2.64 \ { s}}[/tex]