Step-by-step explanation:1. $(3a^{2}b^{-2})(-2a^{4}bc)$To simplify this expression, we can multiply the coefficients and add the exponents of the variables:$(3 \times -2)(a^{2+4})(b^{-2+1})(c)$$= -6a^{6}b^{-1}c$$= -6a^{6}/b$2. $(4x^{3}y^{2})(-x^{2}yz^{2})$To simplify this expression, we can multiply the coefficients and add the exponents of the variables:$(4 \times -1)(x^{3+2})(y^{2+1})(z^{2})$$= -4x^{5}y^{3}z^{2}$3. $\frac {X^{6}}{X^{2}}$To simplify this expression, we can subtract the exponents of the variables:$X^{6-2}$$= X^{4}$4. $\frac {-15x^{3}\times 5}{3x^{5}}$To simplify this expression, we can divide the coefficients and subtract the exponents of the variables:$\frac {-15 \times 5}{3}(x^{3-5})$$= -25x^{-2}$$= -25/x^{2}$5. $(x^{3})^{2}$To simplify this expression, we can multiply the exponents of the variables:$x^{3 \times 2}$$= x^{6}$6. $(-3a^{2}b^{3})^{3}$To simplify this expression, we can raise the coefficients and variables to the power of 3:$(-3)^{3}(a^{2 \times 3})(b^{3 \times 3})$$= -27a^{6}b^{9}$