Answer:Problem 1: Gasoline UsageLet G = k × d × √s, where G = gasoline used, d = distance, s = speed, and k = constant.Given: G = 25 liters, d = 100 km, s = 100 km/hrFind k: 25 = k × 100 × √100k ≈ 0.025Now, find G for d = 192 km, s = 64 km/hr:G ≈ 0.025 × 192 × √64[tex] \large \text{G ≈ 38.4 liters}[/tex]Problem 2: Triangle AreaLet A = k × b × h, where A = area, b = base, h = height, and k = constant.Given: A = 36 cm², b = 8 cm, h = 9 cmFind k: 36 = k × 8 × 9k = 0.5Now, find A for b = 10 cm, h = 7 cm:A = 0.5 × 10 × 7[tex] \large \text{A = 35 cm²}[/tex]Problem 3: Cylinder VolumeLet V = k × h × r², where V = volume, h = height, r = radius, and k = constant.Given: V = 112 cm³, h = 7 cm, r = 4 cmFind k: 112 = k × 7 × 16k ≈ 1Now, find V for h = 14 cm, r = 8 cm:V ≈ 1 × 14 × 64[tex] \large \text{V ≈ 896 cm³}[/tex]Problem 4: Wood MassLet M = k × l × w, where M = mass, l = length, w = width, and k = constant.Given: M = 200 grams, l = 20 cm, w = 10 cmFind k: 200 = k × 20 × 10k = 1Now, find M for l = 15 cm, w = 10 cm:M = 1 × 15 × 10[tex] \large \text{M = 150 grams}[/tex]Problem 5: Metal WeightLet W = k × l × w × t, where W = weight, l = length, w = width, t = thickness, and k = constant.Given: W = 18.2 kg, l = 13 dm, w = 8 dm, t = 6 dmFind k: 18.2 = k × 13 × 8 × 6k ≈ 0.0385Now, find W for l = 16 dm, w = 10 dm, t = 4 dm:W ≈ 0.0385 × 16 × 10 × 4[tex] \large \text{W ≈ 24.64 kg}[/tex]