Step-by-step explanation:a.) 1. Express both sides with the same base: .7^{3x+4} < (7^2)^{2x+1}7^{3x+4} < 7^{2(2x+1)} = 7^{4x+2}3x + 4 < 4x + 24 - 2 < 4x - 3x2 < x ] b.) 1. Express both sides with the same base: and .(2^4)^{2x-5} \geq (2^6)^{2x-3}2^{4(2x-5)} \geq 2^{6(2x-3)}2^{8x-20} \geq 2^{12x-18} ] 3. Equate the exponents:8x - 20 \geq 12x - 18-20 + 18 \geq 12x - 8x-2 \geq 4x ]x \leq -\frac{1}{2}c.) 1. Express both sides with the same base: and .(3^3)^{5x-11} \geq (3^2)^{3x+15}3^{3(5x-11)} \geq 3^{2(3x+15)}3^{15x-33} \geq 3^{6x+30} ] 3. Equate the exponents:15x - 33 \geq 6x + 3015x - 6x \geq 30 + 339x \geq 63 ]x \geq 7d.) 1. Express both sides with the same base: and .(5^2)^{3x-1} \leq (5^3)^{3x+5}5^{2(3x-1)} \leq 5^{3(3x+5)}5^{6x-2} \leq 5^{9x+15} ] 3. Equate the exponents:6x - 2 \leq 9x + 156x - 9x \leq 15 + 2-3x \leq 17 ]x \geq -\frac{17}{3}