ANNUITY[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex] Answer: ₱4,630.92Solution: We'll use the formula for the future value of an ordinary annuity[tex]FV = PMT \cdot \bigg[ \frac{ \big(1 + \frac{i}{n} \big)^{nt} - 1}{\frac{i}{n} } \bigg] \\ [/tex]Convert the annual interest rate to a monthly rate: i/n = 0.05 / 12 = 0.00416666667Calculate the future value factor: [tex]FV Factor = \bigg[ \frac{ \big(1 + 0.00416666667 \big)^{12 \cdot 15} - 1}{0.00416666667 } \bigg] \\ [/tex][tex]FV Factor = 215.89[/tex]Solve for the payment. [tex]PMT = \frac{FV}{FV Factor } \\ [/tex][tex]PMT=\frac{1 \times 10^{6} }{215.89} \\[/tex][tex]PMT=₱4,630.92[/tex]Therefore, John needs to make a payment of ₱4,630.92 at the end of every 6 months for 15 years to accumulate ₱1 million at a 5% interest rate compounded monthly. [tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex] I HOPE THIS HELPS :)