Answer:Quantum entanglement challenges principles of locality and realism, fundamental concepts in quantum mechanics:Locality:Information cannot travel faster than light (Einstein's speed limit).Entangled particles instantaneously affect each other, regardless of distance.Realism:Physical properties exist independently of measurement.Entangled particles' properties are correlated, regardless of measurement.Implications:Quantum non-locality: Entangled particles defy spatial separation.Quantum contextuality: Measurement outcomes depend on the observer's perspective.Influence on quantum computing:Quantum teleportation: Transferring information between entangled particles.Quantum computing architectures: Exploiting entanglement for quantum parallelism.Quantum error correction: Utilizing entanglement for robust computation.Influence on quantum cryptography:Quantum key distribution (QKD): Secure encryption using entangled particles.Quantum secure direct communication (QSDC): Secure communication without encryption.Quantum cryptography protocols: Enhancing security with entanglement.Future developments:Quantum internet: Global entanglement-based networks.Quantum simulations: Studying complex systems with entangled particles.Quantum metrology: Enhancing precision measurements with entanglement.Researchers continue exploring entanglement's potential, driving innovation in quantum technologies.Key papers:Einstein et al. (1935) - EPR paradoxBell (1964) - Bell's theoremAspect (1982) - Bell's inequality experimentsImportant researchers:Albert EinsteinJohn BellAlain AspectAnton Zeilinger