SOLUTION:Step 1: List the given values.[tex]\begin{aligned} & P = \text{715 mmHg} \times \frac{\text{1 atm}}{\text{760 mmHg}} = \text{0.94079 atm} \\ & n = \text{0.556 mol} \\ & T = 58.0^{\circ}\text{C} + 273.15 = \text{331.15 K} \end{aligned}[/tex]Step 2: Calculate the volume of the gas using ideal gas equation.[tex]\begin{aligned} PV & = nRT \\ \frac{PV}{P} & = \frac{nRT}{P} \\ V & = \frac{nRT}{P} \\ & = \frac{(\text{0.556 mol})\left(0.082057 \: \dfrac{\text{L}\cdot\text{atm}}{\text{mol}\cdot\text{K}}\right)(\text{331.15 K})}{\text{0.94079 atm}} \\ & = \text{16.059 L} \\ & \approx \boxed{\text{16.06 L}} \end{aligned}[/tex]Hence, the volume of the gas is 16.06 L.