Answer:[tex]1. \: a_{n} = a_{1} + (n - 1)d \\ \\ a_{n} = a_{1} + (n - 1)d \\ a_{10} = 4 + (10 - 1)(5) \\ a_{10} = 4 + (9)(5) \\ a_{10} = 4 + 45 \\ a_{10} = 49 \\ \\ the \: 10th \: term \: of \: the \:arithmetic \: sequence \: is \: 49[/tex][tex]2. \: a_{n} = a_{1} + (n - 1)d \\ \\ a_{n} = a_{1} + (n - 1)d \\ 542 = 8 + (n - 1)(6) \\ 542 = 8 + 6n - 6 \\ 542 - 8 + 6 = 6n \\ 540 = 6n \\ \frac{540}{6} = \frac{6n}{6} \\ n = 90 \\ \\ 542 \: is \: the \: 90th \: term \: in \: the \: sequence[/tex]Step-by-step explanation:sana makatulong. galingan mo sa pag-aaral. isang brainliest lang, sapat na. salamat..