Step-by-step explanation:I-simplify ang expression\(\frac{x-3}{x-4}+4=\frac{(3x)}{x}\)Hanapin ang common denominator\(\frac{x-3}{x-4}+4=\frac{(3x)}{x}\)\(\frac{x-3}{x-4}+\frac{(x-4)\cdot 4}{x-4}=\frac{(3x)}{x}\)Pagsamahin ang mga fraction na may common denominator\(\frac{x-3}{\textcolor{#C58AF9}{x-4}}+\frac{(x-4)\cdot 4}{\textcolor{#C58AF9}{x-4}}=\frac{(3x)}{x}\)\(\frac{x-3+(x-4)\cdot 4}{\textcolor{#C58AF9}{x-4}}=\frac{(3x)}{x}\)I-simplify\(\frac{5x-19}{x-4}=\frac{(3x)}{x}\)I-cancel ang mga term na parehong nasa numerator at denominator\(\frac{5x-19}{x-4}=\frac{\cancel{x}\cdot 3}{\cancel{x}\cdot 1}\)\(\frac{5x-19}{x-4}=\frac{3}{1}\)I-divide sa 1\(\frac{5x-19}{x-4}=\textcolor{#C58AF9}{\frac{3}{1}}\)\(\frac{5x-19}{x-4}=\textcolor{#C58AF9}{3}\)I-multiply ang lahat ng term sa parehong value para i-eliminate ang mga denominator ng fraction\(\frac{5x-19}{x-4}=3\)\((x-4)\cdot \frac{5x-19}{x-4}=(x-4)\cdot 3\)I-cancel ang mga na-multiply na term na nasa denominator\((x-4)\cdot \frac{5x-19}{x-4}=(x-4)\cdot 3\)\(5x-19=(x-4)\cdot 3\)Baguhin ang pagkakasunod-sunod ng mga term para nasa kaliwa ang mga constant\(5x-19=(x-4)\cdot \textcolor{#C58AF9}{3}\)\(5x-19=\textcolor{#C58AF9}{3}(x-4)\)I-distribute\(5x-19=\textcolor{#C58AF9}{3(x-4)}\)\(5x-19=\textcolor{#C58AF9}{3x-12}\)\(5x-19=3x-12\)2I-add ang \(19\) sa magkabilang bahagi\(5x-19=3x-12\)\(5x-19+\textcolor{#C58AF9}{19}=3x-12+\textcolor{#C58AF9}{19}\)3I-simplify ang expression\(5x-19+19=3x-12+19\)I-add ang mga numero\(5x\textcolor{#C58AF9}{-19}+\textcolor{#C58AF9}{19}=3x-12+19\)\(5x=3x-12+19\)I-add ang mga numero}{-12}+\textcolor{#C58AF9}{19}\)\(5x=3x+\textcolor{#C58AF9}{7}\)\(5x=3x+7\)4I-subtract ang \(3x\) sa magkabilang bahagi\(5x=3x+7\)\(5x\textcolor{#C58AF9}{-3x}=3x+7\textcolor{#C58AF9}{-3x}\)5I-simplify ang expression