Step-by-step explanation:Sure! Let's solve each of these step by step.### FIND THE PRODUCT1) **(3x + 2)²** Using the formula (a + b)² = a² + 2ab + b²: - a = 3x, b = 2 - (3x)² + 2(3x)(2) + (2)² - = 9x² + 12x + 4 **Final Result:** **9x² + 12x + 4**2) **(8x - 4y)²** Using the formula (a - b)² = a² - 2ab + b²: - a = 8x, b = 4y - (8x)² - 2(8x)(4y) + (4y)² - = 64x² - 64xy + 16y² **Final Result:** **64x² - 64xy + 16y²**3) **(x + 9y)²** Using the formula (a + b)² = a² + 2ab + b²: - a = x, b = 9y - (x)² + 2(x)(9y) + (9y)² - = x² + 18xy + 81y² **Final Result:** **x² + 18xy + 81y²**### FACTOR THE POLYNOMIALS4) **y³ + 8x³** This expression can be factored using the sum of cubes: - a³ + b³ = (a + b)(a² - ab + b²) - Here, a = y and b = 2x. - = (y + 2x)(y² - 2xy + 4x²) **Final Result:** **(y + 2x)(y² - 2xy + 4x²)**5) **64m³ - 27m³** This expression can be factored using the difference of cubes: - a³ - b³ = (a - b)(a² + ab + b²) - Here, a = 4m and b = 3m. - = (4m - 3m)(16m² + 12m² + 9) - = (4m - 3m)(16m² + 12m + 9) **Final Result:** **(4m - 3)(16m² + 12m + 9)**