Let's solve for y in each of the given functions and identify the type of function.1. Function: [tex] y = 2x^2 - 7x \)[/tex]Calculate y for the given x values:- For x = -3:[tex]y = 2(-3)^2 - 7(-3) = 2(9) + 21 = 18 + 21 = 39[/tex]- For x = -2:[tex]y = 2(-2)^2 - 7(-2) = 2(4) + 14 = 8 + 14 = 22[/tex]- For x = -1:[tex]y = 2(-1)^2 - 7(-1) = 2(1) + 7 = 2 + 7 = 9[/tex]- For x = 0:[tex]y = 2(0)^2 - 7(0) = 0[/tex]- For x = 1: [tex]y = 2(1)^2 - 7(1) = 2 - 7 = -5[/tex]So the values are:[tex]x = -3, y = 39 [/tex][tex]x = -2, y = 22[/tex][tex]x = -1, y = 9[/tex][tex]x = 0, y = 0[/tex][tex]x = 1, y = -5[/tex]2. Function: y = 5x - 7 Calculate y for the given x values:- For x = -5: [tex]y = 5(-5) - 7 = -25 - 7 = -32[/tex]- For x = 2:[tex]y = 5(2) - 7 = 10 - 7 = 3[/tex]- For x = 1: [tex]y = 5(1) - 7 = 5 - 7 = -2[/tex]- For x = 2:[tex]y = 5(2) - 7 = 10 - 7 = 3[/tex]- For x = 5: [tex]y = 5(5) - 7 = 25 - 7 = 18[/tex]So the values are:[tex]x = -5, y = -32[/tex][tex]x = 2, y =3[/tex][tex]x = 1, y = -2[/tex][tex]x = 2, y = 3[/tex][tex]x = 5, y = 18[/tex]3. Function: y = 3x + 5 Calculate y for the given x values:- For x = 1:[tex]y = 3(1) + 5 = 3 + 5 = 8[/tex]- For x = 0: [tex]y = 3(0) + 5 = 5[/tex]- For x = 1:[tex]y = 3(1) + 5 = 3 + 5 = 8[/tex]- For x = 2:[tex]y = 3(2) + 5 = 6 + 5 = 11[/tex]- For x = 13: [tex]y = 3(13) + 5 = 39 + 5 = 44[/tex]So the values are:[tex]x = 1, y = 8[/tex][tex]x = 0, y = 5[/tex][tex]\( x = 1, y = 8[/tex][tex]x = 2, y = 11[/tex][tex]x = 13, y = 44[/tex]Identifying the Type of Function1. For y = 2x² - 7x : - This is a quadratic function because it involves x² and the graph is a parabola.2. For y = 5x - 7: - This is a linear function because it is in the form y = mx + b and the graph is a straight line.3. For y = 3x + 5: - This is also a linear function for the same reason as above.Plotting on the Cartesian Plane1. Quadratic Function: y = 2x² - 7x - The graph will be a parabola opening upwards.2. Linear Functions: y = 5x - 7 and y = 3x + 5 - The graphs will be straight lines.You can plot these points on a Cartesian plane to visualize their graphs.