Step-by-step explanation:To find \((S/T)(4)\), we first need to evaluate \(S(4)\) and \(T(4)\).1. **Calculate \(S(4)\)**: \[ S(4) = 4^3 + 2(4^2) - 4(4) - 8 \] \[ = 64 + 2(16) - 16 - 8 \] \[ = 64 + 32 - 16 - 8 \] \[ = 64 + 32 - 24 \] \[ = 72 \]2. **Calculate \(T(4)\)**: \[ T(4) = -4^2 + 4 + 6 \] \[ = -16 + 4 + 6 \] \[ = -16 + 10 \] \[ = -6 \]3. **Calculate \((S/T)(4)\)**: \[ \frac{S(4)}{T(4)} = \frac{72}{-6} \] \[ = -12 \]Thus, \((S/T)(4) = -12\).