Answer:To find the product of each expression, follow these steps:1. **1 - x(x²)** - Distribute \( x \) into \( 1 - x² \): - \( 1 \cdot x² = x² \) - \( - x \cdot x² = - x³ \) - So, \( 1 - x(x²) = x² - x³ \)2. **2 × ³(x²)** - Distribute \( ³ \) into \( 2 \cdot x² \): - \( 2 \cdot x² = 2x² \) - \( ³ \cdot x² = ³x² \) - So, \( 2 × ³(x²) = 2x² × ³ = 6x² \)3. **-5g(by³)** - Distribute \( -5g \) into \( by³ \): - \( -5g \cdot by³ = -5bgy³ \) - So, \( -5g(by³) = -5bgy³ \)4. **3xy(-zx²y)** - Distribute \( 3xy \) into \( -zx²y \): - \( 3xy \cdot (-zx²y) = -3zx³y² \) - So, \( 3xy(-zx²y) = -3zx³y² \)5. **10x³y(6xy²)** - Distribute \( 10x³y \) into \( 6xy² \): - \( 10x³y \cdot 6xy² = 60x⁴y³ \) - So, \( 10x³y(6xy²) = 60x⁴y³ \)