Answer:To find the ICM (Least Common Multiple) of the numbers provided in each set, we need to identify the prime factors of each number and then determine the highest power of each prime factor that appears in any of the numbers. Let's calculate the ICM for each set: 1. Set: 10, 88, 16, 24, 32, 90, 98, 56, 64, 72, 80, 88, 96Prime Factors: - 10 = 2 * 5- 88 = 2^3 * 11- 16 = 2^4- 24 = 2^3 * 3- 32 = 2^5- 90 = 2 * 3^2 * 5- 98 = 2 * 7 * 7- 56 = 2^3 * 7- 64 = 2^6- 72 = 2^3 * 3^2- 80 = 2^4 * 5- 88 = 2^3 * 11- 96 = 2^5 * 3ICM = 2^6 * 3^2 * 5 * 7 * 11 = 633602. Set: 9, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99Prime Factors: - 9 = 3^2- 18 = 2 * 3^2- 27 = 3^3- 36 = 2^2 * 3^2- 45 = 3^2 * 5- 54 = 2 * 3^3- 63 = 3^2 * 7- 72 = 2^3 * 3^2- 81 = 3^4- 90 = 2 * 3^2 * 5- 99 = 3^2 * 11ICM = 2^3 * 3^4 * 5 * 7 * 11 = 415803. Set: 15, 15, 30, 45, 50, 65, 70, 85, 100Prime Factors: - 15 = 3 * 5- 30 = 2 * 3 * 5- 45 = 3^2 * 5- 50 = 2 * 5^2- 65 = 5 * 13- 70 = 2 * 5 * 7- 85 = 5 * 17- 100 = 2^2 * 5^2ICM = 2^2 * 3 * 5^2 * 7 * 13 * 17 = 331504. Set: 25, 25, 50, 75, 100Prime Factors: - 25 = 5^2- 50 = 2 * 5^2- 75 = 3 * 5^2- 100 = 2^2 * 5^2ICM = 2^2 * 3 * 5^2 = 300 Therefore, the ICM for each set is as follows: 1. ICM = 633602. ICM = 415803. ICM = 331504. ICM = 300Step-by-step explanation:I hope this help you!