Answer:To factor each expression, we need to identify and factor out the greatest common factor (GCF) first, and then apply appropriate factoring methods. Here are the solutions:1. **\(8x^2 - 12\)** - **GCF:** 4 - Factor out the GCF: \[ 8x^2 - 12 = 4(2x^2 - 3) \]2. **\(3x^2 + 81\)** - **GCF:** 3 - Factor out the GCF: \[ 3x^2 + 81 = 3(x^2 + 27) \] - The expression inside the parentheses, \(x^2 + 27\), cannot be factored further using real numbers.3. **\(16x^2 - 25\)** - This is a difference of squares. - Factor it as follows: \[ 16x^2 - 25 = (4x)^2 - 5^2 = (4x - 5)(4x + 5) \]4. **\(12x^2 - 8\)** - **GCF:** 4 - Factor out the GCF: \[ 12x^2 - 8 = 4(3x^2 - 2) \]5. **\(18x^2 - 8\)** - **GCF:** 2 - Factor out the GCF: \[ 18x^2 - 8 = 2(9x^2 - 4) \] - \(9x^2 - 4\) is a difference of squares: \[ 9x^2 - 4 = (3x)^2 - 2^2 = (3x - 2)(3x + 2) \] - So: \[ 18x^2 - 8 = 2(3x - 2)(3x + 2) \]
Step-by-step explanation:Nabigyan ko ng simpleng pagfa-factor ang bawat ekspresyon sa pamamagitan ng pagkuha ng pinakamalaking common factor. Kung kailangan mo ng karagdagang tulong sa anumang bahagi ng mga ekspresyon